Enzyme Immunoassay for Urinary Isoprostane
For Research Use Only
This product is protected by U.S. Patents 5,700,654; 5,858,696; 5,891,622

INTRODUCTION

Isoprostanes are prostaglandin-like compounds that are produced by free radical mediated peroxidation of lipoproteins. This kit is for the quantification of 15-isoprostane F₂ⱼ (also known as 8-epi-PGF₂ⱼ or 8-iso-PGF₂ⱼ) in urine samples. Levels of 15-isoprostane F₂ⱼ in urine are useful for the non-invasive assessment of oxidant stress in vivo. 15-isoprostane F₂ⱼ has also been shown to be a potent vasoconstrictor in rat kidneys and rabbit lungs, and plays a causative role in atherogenesis. Elevated isoprostane levels are associated with hepatorenal syndrome, rheumatoid arthritis, atherosclerosis and carcinogenesis.

PRINCIPLES OF PROCEDURE

This kit is a competitive enzyme-linked immunoassay (ELISA) for determining levels of 15-isoprostane F₂ⱼ (the best characterized isoprostane) in urine samples. Briefly, urine samples are mixed with an enhanced dilution buffer that essentially eliminates interference due to non-specific binding. The 15-isoprostane F₂ⱼ in the samples or standards competes with 15-isoprostane F₂ⱼ conjugated to horseradish peroxidase (HRP) for binding to a polyclonal antibody specific for 15-isoprostane F₂ⱼ coated on the microplate. The HRP activity results in color development when substrate is added, with the intensity of the color proportional to the amount of 15-isoprostane F₂ⱼ-HRP bound and inversely proportional to the amount of unconjugated 15-isoprostane F₂ⱼ in the samples or standards.

MATERIALS PROVIDED

<table>
<thead>
<tr>
<th>Component</th>
<th>Contents</th>
<th>Quantity</th>
<th>Storage</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coated Plate</td>
<td>Anti-15-Isoprostane F₂ⱼ coated 96-well plate</td>
<td>1</td>
<td>4°C</td>
<td>EA85a</td>
</tr>
<tr>
<td>Standard</td>
<td>15-Isoprostane F₂ⱼ standard (1 μg/mL)</td>
<td>2 x 60 μL</td>
<td>4°C</td>
<td>EA85b</td>
</tr>
<tr>
<td>Enhanced Dilution Buffer</td>
<td>General buffer for diluting assay components</td>
<td>100 mL</td>
<td>4°C</td>
<td>EA85c</td>
</tr>
<tr>
<td>Wash Buffer</td>
<td>5x solution for washing plate</td>
<td>40 mL</td>
<td>4°C</td>
<td>EA85d</td>
</tr>
<tr>
<td>Substrate</td>
<td>TMB Substrate</td>
<td>25 mL</td>
<td>4°C</td>
<td>EA85e</td>
</tr>
<tr>
<td>HRP Conjugate</td>
<td>15-Isoprostane F₂ⱼ HRP conjugate</td>
<td>250 μL</td>
<td>4°C</td>
<td>EA85f</td>
</tr>
<tr>
<td>Glucuronidase</td>
<td>β-Glucuronidase for sample pretreatment (lyophilized)</td>
<td>2 vials</td>
<td>4°C</td>
<td>GL85a</td>
</tr>
<tr>
<td>Acetate Buffer</td>
<td>Buffer used to reconstitute the β-Glucuronidase</td>
<td>500 μL</td>
<td>4°C</td>
<td>GL85b</td>
</tr>
</tbody>
</table>

MATERIALS NEEDED BUT NOT PROVIDED

1. Adjustable pipettes (10-1,000 μL) and disposable tips
2. Beakers, flasks, and cylinders as necessary for preparation of reagents
3. Microplate reader with 450 nm filter
4. Deionized Water
5. 3 M Sulfuric Acid
It is recommended that urine samples be normalized to creatinine or a comparable biomarker to allow reasonable sample-to-sample comparison of urinary 15-isoprostane F\textsubscript{2\alpha} values. Please inquire about our Creatinine Assay Kit (product number CR01) at 800-692-4633.

STORAGE CONDITIONS

1. Store this kit and its components at 4°C until use.
2. Do not freeze.

WARNINGS AND PRECAUTIONS

1. Use aseptic technique when opening and dispensing reagents.
2. This kit is designed to work properly as provided and instructed. Additions, deletions, or substitutions to the procedure or reagents are not recommended, as they may be detrimental to the assay.
3. Exercise universal precautions during the performance or handling of this kit or any component contained therein.

PROCEDURAL NOTES

1. Reagents can be used immediately upon removal from refrigeration.
2. Performance of the entire kit at once is not required. When performing this kit in part, please adhere to the following:
 - All unused components should be returned to storage at 4°C.
 - Unused portions of the microplate should be returned to the zip lock pouch with desiccant prior to storage at 4°C.
 - The Isoprostane HRP Conjugate is most stable at the stock concentration as provided; use only the appropriate amount of this stock and store remaining for subsequent uses.
 - Create a standard curve for each performance of the assay. Two vials of Standard are provided for added ease and convenience of use.
 - Each vial of β-Glucuronidase is sufficient for treating 20 samples and should be reconstituted as needed.
3. To minimize error due to handling, wipe the exterior bottom of the microplate wells with a lint-free paper towel.

SAMPLE COLLECTION

This kit is designed for extraction-free analysis of urine or like media. Samples such as plasma, serum, tissues, and cultures should employ the use of Oxford Biomedical Research product number EA84. Please contact 800-692-4633 for further details.

Sample collection and preparation is subject to the discretion and approval of the principal investigator.

Spot or 24-hour urine should be collected then aliquoted and stored immediately at –80°C. Additives such as 0.02% thimerosal and 0.005% BHT may be used as preservatives where applicable but is typically not required.

REAGENT PREPARATION

1. **5x Wash Buffer**: Dilute to 1x with deionized water and mix prior to use.
2. **15-isoprostane F\textsubscript{2\alpha} HRP Conjugate**: Dilute 1:30 with Enhanced Dilution Buffer. For performance of the entire assay at once, add 200 μL of conjugate to 5.8 mL of Enhanced Dilution Buffer.
3. **β-Glucuronidase**: Reconstitute each vial with 120 μL of Acetate Buffer, taking care to avoid bubbles. Prepare immediately prior to use and place on ice. Each vial is sufficient for 20 samples.
SAMPLE PREPARATION

Oxford Biomedical Research has found that an average of 50% of the isoprostane excreted in human urine is conjugated to glucuronic acid. The extent of glucuronidation among individuals ranges significantly from 28% to 80%. In light of this information it is strongly recommended that specimens be pretreated with β-glucuronidase prior to analysis to provide a more accurate assessment of oxidative stress. This kit provides sufficient materials and methods for the treatment of 40 samples allowing the user to differentiate the inter-individual differences in glucuronidation and measure the total systemic isoprostane output.

β-Glucuronidase Treatment

1. For every 50 μL of stock urine to be assayed, add 5 μL of Glucuronidase. Seal container and mix solution by inversion.
2. Incubate the mixture at 37°C for 2 hours.
3. Your sample is now ready for dilution and assay.

Samples should be diluted with Enhanced Dilution Buffer prior to assay. Recommended starting dilutions are 1:4 or 1:8, regardless of pretreatment.

STANDARD PREPARATION

The 15-Isoprostane F₂α Standard is provided as a 1 μg/mL stock solution. Use the following tables to dilute a set of standard stock solutions and construct an eight-point standard curve.

Table 1: Standard Stock Preparation

<table>
<thead>
<tr>
<th>Standard</th>
<th>IsoP. Conc. (ng/mL)</th>
<th>Vol. of EIA Buffer (μL)</th>
<th>Transfer Vol. (μL)</th>
<th>Final Vol. (μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1000</td>
<td>-</td>
<td>Provided</td>
<td>60</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>450</td>
<td>50 μL of A</td>
<td>495</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>495</td>
<td>5 μL of B</td>
<td>495</td>
</tr>
<tr>
<td>D</td>
<td>0.2</td>
<td>495</td>
<td>5 μL of C</td>
<td>500</td>
</tr>
</tbody>
</table>

Table 2: Standard Curve Preparation

<table>
<thead>
<tr>
<th>Standard</th>
<th>IsoP. Conc. (ng/mL)</th>
<th>Vol. of EIA Buffer (μL)</th>
<th>Vol. of Stock B (μL)</th>
<th>Vol. of Stock C (μL)</th>
<th>Vol. of Stock D (μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S7</td>
<td>75</td>
<td>50</td>
<td>150</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S6</td>
<td>10</td>
<td>180</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S5</td>
<td>2.5</td>
<td>195</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S4</td>
<td>0.5</td>
<td>100</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>S3</td>
<td>0.075</td>
<td>185</td>
<td>-</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>S2</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>200</td>
</tr>
<tr>
<td>S1</td>
<td>0.0025</td>
<td>150</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>B0</td>
<td>0</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
ASSAY PROCEDURE

1. Add 50 μL of Standards or diluted unknowns to each well. Recommended sample dilutions are 1:4 or 1:8 with Enhanced Dilution Buffer. See Scheme I for a suggested plate layout.

2. Add 50 μL of diluted 15-isoprostane F₂ HRP Conjugate to each well omitting the Reagent Blank (RB); add 50 μL of Enhanced Dilution Buffer in lieu of Conjugate. Incubate the plate for 2 hours at room temperature.

3. Wash wells according to the following wash procedure:
 a. Remove the contents of each well by inversion of the plate.
 b. Tap out the remaining contents of the plate onto a lint free paper towel.
 c. Add 300 μL of 1x Wash Buffer.
 d. Let stand for 2-3 minutes.
 e. Repeat procedure two more times, then proceed to step “f”.
 f. Remove the contents of each well by inversion of plate into an appropriate disposal device.
 g. Tap out the remaining contents of the plate onto a lint free paper towel, then proceed to step 4.

4. Add 150 μL of TMB Substrate to each well.

5. Incubate for 30 minutes until an appreciable blue hue is observed for the B₀.

6. Add 50 μL of 3 M Sulfuric Acid to each well to stop the reaction. The color will change from blue to yellow.

7. Read the plate at 450 nm.

 NOTE: The plate can be alternatively read at 650 nm in the absence of the addition of 3 M Sulfuric Acid in step 6 above.

 Scheme I:

 | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|----|----|----|
A | S7| S7| U1| U1| U9| U9| U17| U17| U25| U25| U33| U33|
B | S6| S6| U2| U2| U10| U10| U18| U18| U26| U26| U34| U34|
C | S5| S5| U3| U3| U11| U11| U19| U19| U27| U27| U35| U35|
D | S4| S4| U4| U4| U12| U12| U20| U20| U28| U28| U36| U36|
E | S3| S3| U5| U5| U13| U13| U21| U21| U29| U29| U37| U37|
F | S2| S2| U6| U6| U14| U14| U22| U22| U30| U30| U38| U38|
G | S1| S1| U7| U7| U15| U15| U23| U23| U31| U31| U39| U39|
H | B0| B0| U8| U8| U16| U16| U24| U24| U32| U32| RB | RB |

CALCULATIONS

1. Average the Reagent Blank (RB) absorbance values and subtract this average from the value obtained for all other wells. Most modern microplate readers are capable of doing this automatically.

2. Average replicates of each Standard S₁ through S₇. Divide each average by the mean B₀ value and multiply the result by 100 to obtain %B₀ values.

3. Graph %B₀ values (y-axis-linear) vs. standard concentration (x-axis-logarithmic) to obtain a standard curve. Figure 1 is a Typical Standard Curve, which plots concentration vs. absorbance.

4. Average the replicates of each unknown and divide by the average B₀ value to obtain %B₀, then determine corresponding concentration using the standard curve and account for dilution factors.
Figure 1: Typical Standard Curve

Typical B/B₀: 20% - 4.2 ng/mL; 50% - 0.42 ng/mL; 80% - 0.05 ng/mL

PERFORMANCE CHARACTERISTICS

Cross reactivity at 50% B/B₀

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cross Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-isoprostane F₂t</td>
<td>100.0%</td>
</tr>
<tr>
<td>9α,11β-PROSTAGLANDIN F₂α</td>
<td>4.1%</td>
</tr>
<tr>
<td>13,14-DIHYDRO-15-KETO-PGF₂α</td>
<td>3.0%</td>
</tr>
<tr>
<td>9β,11α-PROSTAGLANDIN F₂α</td>
<td><0.01%</td>
</tr>
<tr>
<td>PROSTAGLANDIN F₂α</td>
<td><0.01%</td>
</tr>
<tr>
<td>6-KETO-PROSTAGLANDIN F₁₀</td>
<td><0.01%</td>
</tr>
<tr>
<td>PROSTAGLANDIN E₂</td>
<td><0.01%</td>
</tr>
<tr>
<td>PROSTAGLANDIN D₂</td>
<td><0.01%</td>
</tr>
<tr>
<td>ARACHIDONIC ACID</td>
<td><0.01%</td>
</tr>
</tbody>
</table>

VALIDATION

The concentrations of 15-isoprostane F₂t in several human urine samples were determined by immunoassay and by GC/MS following solid phase extraction of separate aliquots, and a correlation (r²) of > 0.8 was obtained (Figure 2).

Figure 2: ELISA Correlation with GC/MS
REFERENCES

8. Morrow, J.D., Roberts II, L.J., Meth. Enz. 300: 3-12

DISCLAIMER

This information is believed to be correct but does not purport to be all-inclusive and shall be used only as a guide. Oxford Biomedical Research, Inc. shall not be held liable for any damage resulting from handling or from contact with the above product. See catalog for additional terms and conditions of sale.

TECHNICAL SUPPORT

If you need technical information or assistance with assay procedures, please call our Technical Support Department at 800-692-4633 or 248-852-8815. Our staff will answer your questions about this or any other product in the Oxford Biomedical line.

GUARANTEE AND LIMITATION OF REMEDY

Oxford Biomedical Research, Inc. makes no guarantee of any kind, expressed or implied, which extends beyond the description of the material in this ELISA kit, except that these materials and this kit will meet our specifications at the time of delivery. Buyer's remedy and Oxford Biomedical Research, Inc.'s sole liability hereunder is limited to, at Oxford Biomedical Research, Inc.'s option, refund of the purchase price of, or the replacement of, material that does not meet our specification. By acceptance of our products, Buyer indemnifies and holds Oxford Biomedical Research, Inc. harmless against, assumes all liability for the consequence of its use or misuse by the Buyer, its employees, or others. Said refund or replacement is conditioned of Buyer notifying Oxford Biomedical Research, Inc. within (30) days of the receipt of product. Failure of Buyer to give said notice within said thirty (30) days shall constitute a waiver by the Buyer of all claims hereunder with respect to said material(s).

Oxford Biomedical Research, Inc.
P.O. Box 522
Oxford, MI 48371 U.S.A.

Orders: 800-692-4633
Technical Service: 248-852-8815
Fax: 248-852-4466
E-mail: info@oxfordbiomed.com

Made in the U.S.A.